

Automated Performance Estimation for Decentralized Optimization via Network Size Independent Problems

Sébastien Colla, Julien Hendrickx

Mathematical Engineering Department, UCLouvain

PEP-talks 2023

Decentralized Optimization

Decentralization

- \blacktriangleright Local function: f_i
- \succ Local copy of $x: x_i$

Iterative algorithm

- Local computations
- Local communications (W)
 so that $x_i = x_i$ (eventually)

Decentralized Gradient Descent (DGD)

$$\begin{array}{c}
\underset{x_{1},\ldots,x_{N}}{\min} F_{s}(x_{1},\ldots,x_{N}) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(x_{i}) \\
\text{s.t. } x_{i} = x_{j} \quad \forall (i,j) \text{ neighbors} \\
\begin{array}{c}
\overbrace{k_{1}}{1} & \overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} \\
\overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} \\
\end{array}$$

$$\begin{array}{c}
\overbrace{k_{1}}{1} & \overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} \\
\overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} \\
\end{array}$$

$$\begin{array}{c}
\overbrace{k_{2}}{1} & \overbrace{k_{2}}{1} \\
\overbrace{k_{3}}{1} & \overbrace{k_{4}}{1} \\
\overbrace{k_{3}}{1} & \overbrace{k_{4}}{1} \\
\end{array}$$

$$\begin{array}{c}
\overbrace{k_{4}}{1} & \overbrace{k_{4}}{1} \\
\overbrace{k_{3}}{1} & \overbrace{k_{4}}{1} \\
\end{array}$$

Decentralized Gradient Descent (DGD) For each iteration k $y_i^k = \sum_j w_{ij} x_j^k$ Consensus step $x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k)$ Local gradient step

4

Motivations: Decentralized Machine Learning

Notations

- Model parameters x
- Data set $\{d \in \mathcal{D}\}$

Model training $\min_{x} \sum_{d \in D} \operatorname{Error}(x, d) + \operatorname{regul}(x)$

$\begin{array}{c} x_1 \\ x_2 \\ x_2 \\ x_3 \\ x_4 \\ x_4$

Decentralization

Part of the data \mathcal{D}_i Local function $f_i(x) = \sum_{d \in \mathcal{D}_i} \operatorname{Error}(x, d)$ Local copy of x

 f_3

Motivations Big data – Privacy – Speed Up

- Performance bounds: complex and conservative
- Difficult algorithms comparisons
- Difficult parameters tuning

 ا ا ا

Impact for decentralized optimization

- Access to accurate performance of methods
- > Easier **comparison and tuning** of algorithms
- Rapid exploration of new algorithms.

Performance Estimation Problem (PEP)

Find the worst f_i and x_i^k for K iterations of method M f_i and x_i^k maximizing the error criterion after K iterations

[Colla 2022]

$$\max_{f_i, x_i^k, y_i^k, x^*} \operatorname{perf}(f_i, x_i^0, \dots, x_i^K)$$

With $f_i \in x_i^0$ $\nabla f(x^*) = 0$

> $x_i^0, ..., x_i^K$ $y_i^0, ..., y_i^{K-1}$

C Toolbox PESTO ∳ PEPit € initial condition optimality condition

class of functions

algorithm description

Can be solved with proper discretization and SDP reformulation

Example of setting for DGD

[Colla 2022]

$$\max_{f_{i}, x_{i}^{k}, y_{i}^{k}, x^{*}} \operatorname{perf}(f_{i}, x_{i}^{0}, \dots, x_{i}^{K}) = f\left(\frac{1}{N}\sum_{i} x_{i}^{K}\right) - f(x^{*})$$

With
$$f_i$$
 convex with bounded subgradients
 $\frac{1}{N} \sum_{i=1}^{N} ||x_i^0 - x^*||^2 \le R^2$ initial condition
 $\nabla f(x^*) = 0$ optimality condition

$$\begin{array}{c} \textcircledlength{\abovedisplayskip}{0.5cm} \hline \textbf{CO} \\ \hline \textbf{Toolbox} \\ \textbf{PESTO} \bigstar \\ \textbf{PEPit} \textcircledlength{\belowdisplayskip}{0.5cm} \hline \textbf{DGD} \\ \hline \begin{array}{c} y_i^k = \sum_{j=1}^N W_{ij} \ x_j^k \\ x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \\ \textbf{for } k = 0 \dots K - 1 \end{array}$$

Can be solved with proper discretization and SDP reformulation

Can be solved with proper discretization and SDP reformulation

[Colla 2022]

Tightness observed in all experiments (DGD, DIGing, etc)

- Improved performance guarantees and tuning
- Interesting insights (e.g. worst network matrix)

Example for DGD:

[Colla 2022]

Tightness observed in all experiments (DGD, DIGing, etc)

Improved performance guarantees and tuning

Interesting insights (e.g. worst network matrix)

Size of the SDP PEP formulation

 \succ Depends on the number of variables (increasing with N and K)

Does not depend on their dimension d (d is unknown) because SDP reformulation involves scalar products

$$\max \qquad \operatorname{perf}(f_i, x_i^0, \dots, x_i^K)$$
$$f_i \quad x_i^k, y_i^k \in \mathbb{R}^d \qquad \operatorname{for } i = 1 \dots N$$
$$\operatorname{for } k = 0 \dots K$$

DGD – Worst-case evolution with N

For K = 5 iterations and $\lambda(W) \in [-\lambda, \lambda]$

New Contributions

PEP for distributed optimization whose size (and results) are **independent of the number of agents** *N*

Advantages

- Performance guarantees for any value of *N*
- Small size PEP are easier to exploit

Global representation

 $\operatorname{perf}(F_{s}, \mathbf{x}^{0}, \dots, \mathbf{x}^{K})$ max $F_{S}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(x_{i})$ \mathbf{x}^{K}

Size of the SDP PEP formulation

- Depends on the number of variables
- Does not depend on their dimension

(example for DGD)

 $\max_{f_i, x_i^k, y_i^k, x^*} f\left(\frac{1}{N}\sum_i x_i^K\right) - f(x^*) \qquad \max_{F_s, \mathbf{x}^k, \mathbf{y}^k, \mathbf{x}^*} F_s(\bar{x}^K \mathbf{1}) - F_s(\mathbf{x}^*)$

 f_i convex with bounded subgradients

$$\frac{1}{N} \sum\nolimits_{i=1}^{N} \left\| x_i^0 - x^* \right\|^2 \leq R^2$$

 $\nabla f(x^*) = 0$ optimality condition

 F_s convex with bounded subgradients

$$\frac{1}{N} \| \mathbf{x}^0 - \mathbf{x}^* \|^2 \le R^2$$

 $\max_{f_i, x_i^k, y_i^k, x^*} f\left(\frac{1}{N}\sum_i x_i^K\right) - f(x^*)$

 f_{i} convex with bounded subgradients

 $\frac{1}{N} \sum_{i=1}^{N} \left\| x_i^0 - x^* \right\|^2 \le R^2$

 $\nabla f(x^*) = 0$ optimality condition

DGD
$$\begin{cases} y_i^k = \sum_{j=1}^N W_{ij} x_j^k \\ x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \end{cases}$$

symmetric for W doubly stochastic $\lambda(W) \in [\lambda^{-}, \lambda^{+}]$

-Kan - c

$$\max_{F_s, \mathbf{x}^k, \mathbf{y}^k, \mathbf{x}^*} F_s(\bar{x}^k \mathbf{1}) - F_s(\mathbf{x}^*)$$

 F_s convex with bounded subgradients

$$\frac{1}{N} \|\mathbf{x}^0 - \mathbf{x}^*\|^2 \le R^2$$

DGD
$$\begin{cases} \mathbf{y}^{k} = (W \otimes I_{d}) \mathbf{x}^{k} \\ \mathbf{x}^{k+1} = \mathbf{y}^{k} - \alpha N \, \nabla F_{s}(\mathbf{x}^{k}) \end{cases}$$

symmetric
for
$$W$$
 doubly stochastic
 $\lambda(W) \in [\lambda^-, \lambda^+]$ 17

$$\begin{array}{c} \underline{\mathsf{PEP}} - \underline{\mathsf{local representation}} & \underline{\mathsf{PEP}} - \underline{\mathsf{global representation}} \\ (example for DGD) \\ \\ \max_{f_i, x_i^k, y_i^k, x^*} f\left(\frac{1}{N} \sum_i x_i^k\right) - f(x^*) & \max_{F_s, \mathbf{x}^k, \mathbf{y}^k, \mathbf{x}^*} F_s(\bar{x}^K \mathbf{1}) - F_s(\mathbf{x}^*) \\ & F_s, \mathbf{x}^k, \mathbf{y}^k, \mathbf{x}^* \end{array} \right) \\ \hline \\ \mathbf{For any decentralized method that combines} \\ & \cdot & \text{Gradient evaluations} \\ & \cdot & \text{Consensus steps} \\ & \cdot & \text{Linear combinations} \end{array} \\ \\ \mathbf{DGD} \begin{bmatrix} y_i^k = \sum_{j=1}^N W_{ij} x_j^k \\ & x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \end{bmatrix} \\ \mathbf{DGD} \begin{bmatrix} \mathbf{y}_i^k = (W \otimes I_d) \mathbf{x}^k \\ & \mathbf{x}^{k+1} = \mathbf{y}_i^k - \alpha \nabla F_s(\mathbf{x}^k) \end{bmatrix} \end{array}$$

for W symmetric $\lambda(W) \in [\lambda^-, \lambda^+]$ symmetric for W doubly stochastic $\lambda(W) \in [\lambda^-, \lambda^+]$ 18

$$\begin{array}{c} \underline{\mathsf{PEP}} - \underline{\mathsf{local representation}}_{(example for DGD)} & \underline{\mathsf{PEP}} - \underline{\mathsf{global representation}}_{(example for DGD)} \\ \\ \max_{f_i, x_i^k, y_i^k, x^*} f\left(\frac{1}{N} \sum_i x_i^k\right) - f(x^*) & \max_{F_s} F_s\left(\overline{x}^k\right) - F_s\left(x^*\right) \\ & F_s\left(\overline{x}^k, y^k, x^*\right) - F_s\left(\overline{x}^k\right) \\ & F_s\left(\overline{x}^k, y^k, x^*\right) + F_s\left(\overline{x}^k\right) - F_s\left(\overline{x}^k\right) \\ \hline \\ For any decentralized method that combines \\ & \cdot & \mathsf{Gradient evaluations} \\ & \cdot & \mathsf{Gradient evaluations} \\ & \cdot & \mathsf{Consensus steps} \\ & \cdot & \mathsf{Linear combinations} \\ \end{array} \\ \\ \mathsf{DGD} \begin{bmatrix} y_i^k = \sum_{j=1}^N W_{ij} x_j^k \\ & x_i^{k+1} = y_i^k - \alpha \nabla f_i(x_i^k) \\ & \mathsf{DGD} \begin{bmatrix} \mathbf{y}^k = (W \otimes I_d) \mathbf{x}^k \\ & \mathbf{x}^{k+1} = \mathbf{y}^k - \alpha N \nabla F_s(\mathbf{x}^k) \\ \end{array} \end{bmatrix}$$

for W symmetric $\lambda(W) \in [\lambda^-, \lambda^+]$ symmetric for W doubly stochastic $\lambda(W) \in [\lambda^-, \lambda^+]$ 18

symmetric for W doubly stochastic $\lambda(W) \in [\lambda^-, \lambda^+]$ symmetric for W doubly stochastic $\lambda(W) \in [\lambda^-, \lambda^+]$ 18

Generalized Decentralized Problem

relax separability of F_s

$$\min_{\mathbf{X}} F_{s}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} f_{i}(x_{i})$$

s.t. $x_{1} = \dots = x_{N}$

 $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^{Nd}$

$$\min_{\mathbf{X}} F(\mathbf{x})$$

s.t. $\mathbf{x} \in C$

Generalized Decentralized Problem

Consensus subspace
$$C = \{ \mathbf{x} \in \mathbb{R}^{Nd} \mid x_1 = \cdots = x_N \in \mathbb{R}^d \}$$

? How can we represent $\mathbf{x}^* \in C$ in PEP?

Change of variables

to decouple consensus subspace and its orthogonal complement

Consensus subspace
$$C = \{ \mathbf{x} \in \mathbb{R}^{Nd} \mid x_1 = \dots = x_N \in \mathbb{R}^d \}$$
 size d
 C^{\perp} orthogonal complement of C size $(N-1)d$

Change of variables

$$_{b}\mathbf{x} = \begin{bmatrix} \bar{x} \\ x_{\perp} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{N} \end{bmatrix} \in \mathbb{R}^{Nd}$$

Change of variables

to decouple consensus subspace and its orthogonal complement

Consensus subspace
$$C = \{ \mathbf{x} \in \mathbb{R}^{Nd} \mid x_1 = \dots = x_N \in \mathbb{R}^d \}$$
 size d
 C^{\perp} orthogonal complement of C size $(N-1)d$

Change of variables

$$_{b}\mathbf{x} = \begin{bmatrix} \bar{x} \\ x_{\perp} \end{bmatrix} = \frac{1}{\sqrt{N}} \begin{bmatrix} Q_{\parallel}^{T} \\ Q_{\perp}^{T} \end{bmatrix} \mathbf{x}$$
 with Q_{\parallel}^{T} such that $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_{i}$

$$\mathbf{x} = \sqrt{N} \mathbf{Q}_{b} \mathbf{x} = \sqrt{N} \mathbf{Q}_{\parallel} \bar{\mathbf{x}} + \sqrt{N} \mathbf{Q}_{\perp} \mathbf{x}_{\perp}$$
$$\in C \qquad \in C^{\perp}$$

$$\mathbf{x} \in C \quad \iff \quad x_{\perp} = 0$$

Change of variables in the decentralized problem

Change of function $\tilde{F}: \mathbb{R}^{Nd} \to \mathbb{R}, \qquad \tilde{F}({}_{b}\mathbf{x}) = F(\sqrt{N}Q_{b}\mathbf{x}) = F(\mathbf{x})$ $\nabla \tilde{F}({}_{b}\mathbf{x}) = \begin{bmatrix} \nabla_{\parallel} \tilde{F}({}_{b}\mathbf{x}) \\ \nabla_{\perp} \tilde{F}({}_{b}\mathbf{x}) \end{bmatrix}$

Optimality conditions

 ${}_{b}\mathbf{x}^{*}$ is optimal solution of $({}_{b}GDP)$ iff $x_{\perp}^{*} = 0$ and $\nabla_{\parallel}\tilde{F}({}_{b}\mathbf{x}^{*}) = 0$

Change of variables in the decentralized algorithm

Decouple the updates

$$\checkmark \underline{\text{Gradient evaluations}} \qquad \nabla \widetilde{F}({}_{b}\mathbf{x}) = \begin{bmatrix} \nabla_{\parallel} \widetilde{F}({}_{b}\mathbf{x}) \\ \nabla_{\perp} \widetilde{F}({}_{b}\mathbf{x}) \end{bmatrix}$$

$$\checkmark \underline{\text{Linear combinations}} \qquad \alpha \mathbf{x} + \beta \mathbf{y} + \gamma \mathbf{g} = \alpha_{b}\mathbf{x} + \beta_{b}\mathbf{y} + \gamma_{b}\mathbf{g}$$

$$\alpha \begin{bmatrix} \overline{x} \\ x_{\perp} \end{bmatrix} + \beta \begin{bmatrix} \overline{y} \\ y_{\perp} \end{bmatrix} + \gamma \begin{bmatrix} \overline{g} \\ g_{\perp} \end{bmatrix}$$

$$\checkmark \underline{\text{Consensus step}} \qquad \mathbf{y}^{k} = (W \otimes I_{d})\mathbf{x}^{k} \qquad \text{with } W \qquad \begin{array}{c} \text{symmetric} \\ \text{doubly stochastic} \\ \lambda(W) \in [\lambda^{-}, \lambda^{+}] \end{bmatrix}$$

$$doubly \text{ stochastic} \qquad \overrightarrow{y}^{k} = \overline{x}^{k}$$

$$spectrum \lambda(W) \qquad \Rightarrow \qquad y^{k}_{\perp} = \widetilde{W} x^{k}_{\perp} \qquad \text{with } \widetilde{W} \quad \text{symmetric} \\ \lambda(\widetilde{W}) \in [\lambda^{-}, \lambda^{+}] \end{cases}$$

Agent-Independent PEP formulation (example for DGD)

$$\max_{F, \mathbf{x}^{k}, \mathbf{y}^{k}, \mathbf{x}^{*}} F(\bar{x}^{K}\mathbf{1}) - F(\mathbf{x}^{*})$$

F convex with bounded subgradients

$$\frac{1}{N} \|\mathbf{x}^0 - \mathbf{x}^*\|^2 \le R$$

x^{*} optimality condition

DGD
$$\begin{cases} \mathbf{y}^{k} = (W \otimes I_{d})\mathbf{x}^{k} \\ \mathbf{x}^{k+1} = \mathbf{y}^{k} - \alpha N \, \nabla F(\mathbf{x}^{k}) \end{cases}$$

for W generalized doubly stochastic $\lambda(W) \in [\lambda^-, \lambda^+]$

$$\max_{\substack{\tilde{F}, \ \bar{x}^{k}, \bar{y}^{k} \\ x_{\perp}^{k}, y_{\perp}^{k}}} \quad \tilde{F}\left(\begin{bmatrix} \bar{x}^{K} \\ 0 \end{bmatrix}\right) - \tilde{F}\left(\begin{bmatrix} \bar{x}^{*} \\ x_{\perp}^{*} \end{bmatrix}\right)$$

Agent-Independent PEP formulation

 $\max_{F, \mathbf{x}^{k}, \mathbf{y}^{k}, \mathbf{x}^{*}} F(\bar{x}^{K}\mathbf{1}) - F(\mathbf{x}^{*})$

F convex with bounded subgradients

$$\frac{1}{N} \|\mathbf{x}^0 - \mathbf{x}^*\|^2 \le R$$

x^{*} optimality condition

DGD
$$\begin{cases} \mathbf{y}^{k} = (W \otimes I_{d})\mathbf{x}^{k} \\ \mathbf{x}^{k+1} = \mathbf{y}^{k} - \alpha N \, \nabla F(\mathbf{x}^{k}) \end{cases}$$

symmetric for W generalized doubly stochastic $\lambda(W) \in [\lambda^-, \lambda^+]$

$$\max_{\substack{\tilde{F}, \ \bar{x}^{k}, \bar{y}^{k} \\ x_{\perp}^{k}, y_{\perp}^{k}}} \quad \tilde{F}\left(\begin{bmatrix} \bar{x}^{k} \\ 0 \end{bmatrix}\right) - \tilde{F}\left(\begin{bmatrix} \bar{x}^{*} \\ x_{\perp}^{*} \end{bmatrix}\right)$$

 $\tilde{F}\xspace$ convex with bounded subgradients

$$\begin{split} \|\bar{x}^{0} - \bar{x}^{*} \|^{2} + \|x_{\perp}^{0} - x_{\perp}^{*}\|^{2} &\leq R^{2} \\ x_{\perp}^{*} = 0 \quad \text{and} \quad \nabla_{\parallel} \tilde{F} \left(\begin{bmatrix} \bar{x}^{*} \\ x_{\perp}^{*} \end{bmatrix} \right) = 0 \\ \text{consensus} \begin{bmatrix} \bar{y}^{k} = \bar{x}^{k} & \lambda(\tilde{W}) \in [\lambda^{-}, \lambda^{+}] \\ y_{\perp}^{k} = \tilde{W} x_{\perp}^{k} & \lambda(\tilde{W}) \in [\lambda^{-}, \lambda^{+}] \\ x_{\perp}^{k} = \tilde{W} x_{\perp}^{k} & \alpha \nabla_{\parallel} \tilde{F} \left(\begin{bmatrix} \bar{x}^{k} \\ x_{\perp}^{k} \end{bmatrix} \right) \\ x_{\perp}^{k+1} = y_{\perp}^{k} - \alpha \nabla_{\perp} \tilde{F} \left(\begin{bmatrix} \bar{x}^{k} \\ x_{\perp}^{k} \end{bmatrix} \right) \end{split}$$

Agent-Independent PEP formulation (example for DGD)

 $\max_{F, \mathbf{x}^k, \mathbf{y}^k, \mathbf{x}^*} F(\bar{x}^K \mathbf{1}) - F(\mathbf{x}^*)$

F convex with bounded subgradients

$$\frac{1}{N} \|\mathbf{x}^0 - \mathbf{x}^*\|^2 \le R$$

x^{*} optimality condition

DGD
$$\begin{cases} \mathbf{y}^{k} = (W \otimes I_{d})\mathbf{x}^{k} \\ \mathbf{x}^{k+1} = \mathbf{y}^{k} - \alpha N \, \nabla F(\mathbf{x}^{k}) \end{cases}$$

Can be solved with proper discretization and SDP reformulation

$$\max_{\substack{\tilde{F}, \ \bar{x}^{k}, \bar{y}^{k} \\ x_{\perp}^{k}, y_{\perp}^{k}}} \quad \tilde{F}\left(\begin{bmatrix} \bar{x}^{K} \\ 0 \end{bmatrix}\right) - \tilde{F}\left(\begin{bmatrix} \bar{x}^{*} \\ x_{\perp}^{*} \end{bmatrix}\right)$$

 $\tilde{F}\xspace$ convex with bounded subgradients

$$\begin{split} \|\bar{x}^{0} - \bar{x}^{*} \|^{2} + \|x_{\perp}^{0} - x_{\perp}^{*}\|^{2} \leq R^{2} \\ x_{\perp}^{*} = 0 \quad \text{and} \quad \nabla_{\parallel} \tilde{F} \left(\begin{bmatrix} \bar{x}^{*} \\ x_{\perp}^{*} \end{bmatrix} \right) = 0 \\ \underset{\text{step}}{\text{consensus}} \left\{ \begin{array}{l} \bar{y}^{k} = \bar{x}^{k} \\ y_{\perp}^{k} = \tilde{W} x_{\perp}^{k} \end{array} \right. \lambda(\tilde{W}) \in [\lambda^{-}, \lambda^{+}] \\ \\ g_{\perp}^{\text{radient}} \\ x_{\perp}^{k+1} = \bar{y}^{k} - \alpha \nabla_{\parallel} \tilde{F} \left(\begin{bmatrix} \bar{x}^{k} \\ x_{\perp}^{k} \end{bmatrix} \right) \\ \\ x_{\perp}^{k+1} = y_{\perp}^{k} - \alpha \nabla_{\perp} \tilde{F} \left(\begin{bmatrix} \bar{x}^{k} \\ x_{\perp}^{k} \end{bmatrix} \right) \end{split}$$

Tightness analysis - DGD

For
$$K = 10$$
 iterations, and $\lambda(W) \in [-\lambda, \lambda]$
With convex local functions with bounded subgradients ($R = 1$)

26

Tightness analysis - DIGing

For K = 10 iterations, $\mu = 0.1$, L = 1 and $\lambda(W) \in [-\lambda, \lambda]$.

Algorithms comparison

For K = 10 iterations, $\mu = 0.1$, L = 1 and $\lambda(W) \in [-\lambda, \lambda]$.

Conclusion

Automatic tool for accurate **performance estimation** of decentralized optimization methods

PEP idea: worst-cases are solutions of optimization problems

Agent-independent spectral PEP formulation

- ✓ Size problem independent of N
- Appears to be tight
- ✓ Improves on the literature bounds

We can answer a large diversity of (new) questions

Future works

- Understand tightness of this formulation
- Other classes of averaging matrices

References

- [CH-CDC22] S. Colla, J. M. Hendrickx, "Automated Performance Estimation for Decentralized Optimization via Network Size Independent Problems", CDC 2022.
- [Colla 2022] S. Colla, J. M. Hendrickx, "Automatic Performance Estimation for Decentralized Optimization", preprint 2022.
- [NOR17] A. Nedic, A. Olshevsky, and M. G. Rabbat, "Network topology and communication computation tradeoffs in decentralized optimization", 2017.
- [NOS16] A. Nedic, A. Olshevsky, and W. Shi, "Achieving geometric convergence for distributed optimization over time-varying graphs," SIAM Journal on Optimization, 2016.