Preliminaries

Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity

Eduard Gorbunov¹ Adrien Taylor² Samuel Horváth¹ Gauthier Gidel^{3,4}

Mohamed bin Zayed University of Artificial Intelligence, UAE
 INRIA & D.I. École Normale Supérieure, CNRS & PSL Research University, France
 Université de Montréal and Mila, Canada
 Canada CIFAR Al Chair

PEP Talks 2023, UCLovain, Belgium

Preliminaries

- Negative Comonotonicity
- Proximal Point Method

3/31

Monotone Inclusion Problems

find
$$x^* \in \mathbb{R}^d$$
 such that $0 \in F(x^*)$ (IP)

• $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is some (possibly set-valued) mapping

Eduard Gorbunov February 13, 2023

Monotone Inclusion Problems

Preliminaries

000

find
$$x^* \in \mathbb{R}^d$$
 such that $0 \in F(x^*)$ (IP)

- $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is some (possibly set-valued) mapping
- Classical assumption: F is maximally monotone, i.e., $\forall (x, X), (y, Y) \in Gr(F) = \{(u, U) \in \mathbb{R}^{d \times d} \mid U \in F(u)\}$

$$\langle X - Y, x - y \rangle \ge 0 \tag{1}$$

and there is no other monotone operator H such that $Gr(F) \subset Gr(H)$

Monotone Inclusion Problems: Examples

Min-max problems:

Preliminaries

000

$$\min_{u \in \mathbb{R}^{d_u}} \max_{v \in \mathbb{R}^{d_v}} f(u, v). \tag{2}$$

If f is convex-concave, then (2) is equivalent to solving (IP) with

$$F(x) = \begin{pmatrix} \partial_u f(u, v) \\ \partial_v (-f(u, v)) \end{pmatrix}, \quad x = (u, v)$$

Monotone Inclusion Problems: Examples

Min-max problems:

Preliminaries

000

$$\min_{u \in \mathbb{P}^{d_u}} \max_{v \in \mathbb{P}^{d_v}} f(u, v). \tag{2}$$

If f is convex-concave, then (2) is equivalent to solving (IP) with

$$F(x) = \begin{pmatrix} \partial_u f(u, v) \\ \partial_v (-f(u, v)) \end{pmatrix}, \quad x = (u, v)$$

Minimization problems:

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) \tag{3}$$

If f is convex, then (3) is equivalent to finding a solution of (IP) with

$$F(x) = \partial f(x)$$

Preliminaries

000

Methods for Monotone Inclusion Problems

Proximal Point (PP) method [Martinet, 1970, Rockafellar, 1976]:

$$x^{k+1} = x^k - \gamma F(x^{k+1}) \tag{PP}$$

000

Methods for Monotone Inclusion Problems

Proximal Point (PP) method [Martinet, 1970, Rockafellar, 1976]:

$$x^{k+1} = x^k - \gamma F(x^{k+1}) \tag{PP}$$

Extragradient (EG) method [Korpelevich, 1976]:

$$\widetilde{x}^k = x^k - \gamma_1 F(x^k),
x^{k+1} = x^k - \gamma_2 F(\widetilde{x}^k), \quad \forall k \ge 0,$$
(EG)

Preliminaries

000

References

Methods for Monotone Inclusion Problems

Proximal Point (PP) method [Martinet, 1970, Rockafellar, 1976]:

$$x^{k+1} = x^k - \gamma F(x^{k+1}) \tag{PP}$$

Extragradient (EG) method [Korpelevich, 1976]:

$$\widetilde{x}^k = x^k - \gamma_1 F(x^k),$$

$$x^{k+1} = x^k - \gamma_2 F(\widetilde{x}^k), \quad \forall k \ge 0,$$
(EG)

Optimistic Gradient (OG) method [Popov, 1980]: $\tilde{\chi}^0 = \chi^0$ and

$$\widetilde{x}^{k} = x^{k} - \gamma_{1} F(\widetilde{x}^{k-1}), \quad \forall k > 0,$$

$$x^{k+1} = x^{k} - \gamma_{2} F(\widetilde{x}^{k}), \quad \forall k \geq 0,$$
(0G)

Preliminaries

000

5 / 31

Methods for Monotone Inclusion Problems

Proximal Point (PP) method [Martinet, 1970, Rockafellar, 1976]:

$$x^{k+1} = x^k - \gamma F(x^{k+1}) \tag{PP}$$

Extragradient (EG) method [Korpelevich, 1976]:

$$\widetilde{x}^k = x^k - \gamma_1 F(x^k),
x^{k+1} = x^k - \gamma_2 F(\widetilde{x}^k), \quad \forall k \ge 0,$$
(EG)

Optimistic Gradient (OG) method [Popov, 1980]: $\tilde{\chi}^0 = \chi^0$ and

$$\widetilde{x}^{k} = x^{k} - \gamma_{1} F(\widetilde{x}^{k-1}), \quad \forall k > 0,
x^{k+1} = x^{k} - \gamma_{2} F(\widetilde{x}^{k}), \quad \forall k \geq 0,$$
(0G)

These methods are well-studied for **monotone** problems

Eduard Gorbunov February 13, 2023

Preliminaries

Operator $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally negative comonotone if $\forall (x,X), (y,Y) \in Gr(F)$

$$\langle X - Y, x - y \rangle \ge -\rho \|X - Y\|^2 \tag{4}$$

and there is no other monotone operator H such that $Gr(F) \subset Gr(H)$

Preliminaries

Operator $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally negative comonotone if $\forall (x,X), (y,Y) \in {\tt Gr}(F)$

$$\langle X - Y, x - y \rangle \ge -\rho \|X - Y\|^2 \tag{4}$$

and there is no other monotone operator H such that $Gr(F) \subset Gr(H)$

 Negative comonotonicity (also known as cohypomonotonicity) was introduced by Pennanen [2002]

Preliminaries

Operator $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally negative comonotone if $\forall (x,X),(y,Y)\in Gr(F)$

$$\langle X - Y, x - y \rangle \ge -\rho \|X - Y\|^2 \tag{4}$$

and there is no other monotone operator H such that $Gr(F) \subset Gr(H)$

- Negative comonotonicity (also known as cohypomonotonicity) was introduced by Pennanen [2002]
- Star-negative comonotonicity (also known as weak Minty condition) was introduced by Diakonikolas et al. [2021]: instead of (4) this assumption requires

$$\langle X, x - x^* \rangle \ge -\rho \|X\|^2$$
, where $0 \in F(x^*)$ (5)

Preliminaries

Operator $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is maximally negative comonotone if $\forall (x,X),(y,Y)\in Gr(F)$

$$\langle X - Y, x - y \rangle \ge -\rho \|X - Y\|^2 \tag{4}$$

and there is no other monotone operator H such that $Gr(F) \subset Gr(H)$

- Negative comonotonicity (also known as cohypomonotonicity) was introduced by Pennanen [2002]
- Star-negative comonotonicity (also known as weak Minty condition) was introduced by Diakonikolas et al. [2021]: instead of (4) this assumption requires

$$\langle X, x - x^* \rangle \ge -\rho \|X\|^2$$
, where $0 \in F(x^*)$ (5)

 These assumptions are the weakest known ones under which EG-type methods can be analyzed

- Proximal Point method
 - ✓ Asymptotic convergence [Combettes and Pennanen, 2004]

- Proximal Point method
 - ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
 - ? Non-asymptotic analysis and convergence rates are missing

- Proximal Point method
 - ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
 - Non-asymptotic analysis and convergence rates are missing
 - ? Worst-case examples are unknown

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)
 - ✓ Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\rho < 1/16L$ (in the case of EG) and $\rho < 8/27\sqrt{6}L$ (in the case of OG) [Luo and Tran-Dinh, 2022]

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- ? Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)
 - ✓ Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\rho < 1/16L$ (in the case of EG) and $\rho < 8/27\sqrt{6}L$ (in the case of OG) [Luo and Tran-Dinh, 2022]
 - Non-convergence of EG when $\gamma_1 = 1/L$ and $\rho \ge (1-L\gamma_2)/2L$ [Pethick et al., 2022]

7 / 31

Convergence under Negative Comonotonicity

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- ? Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)
 - ✓ Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\rho < 1/16L$ (in the case of EG) and $\rho < 8/27\sqrt{6}L$ (in the case of OG) [Luo and Tran-Dinh, 2022]
 - ✓ Non-convergence of EG when $\gamma_1 = 1/L$ and $\rho > (1 L\gamma_2)/2L$ [Pethick et al., 2022]
 - ? Can the bound on ρ be improved when $\gamma_1 \neq 1/L$ in the case of EG?

Eduard Gorbunov February 13, 2023

7 / 31

Convergence under Negative Comonotonicity

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- ? Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)
 - ✓ Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\rho < 1/16L$ (in the case of EG) and $\rho < 8/27\sqrt{6}L$ (in the case of OG) [Luo and Tran-Dinh, 2022]
 - ✓ Non-convergence of EG when $\gamma_1 = 1/L$ and $\rho > (1 L\gamma_2)/2L$ [Pethick et al., 2022]
 - ? Can the bound on ρ be improved when $\gamma_1 \neq 1/L$ in the case of EG?
 - ? What is the upper bound on ρ in the case of OG?

Eduard Gorbunov February 13, 2023

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- ? Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)
 - ✓ Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\rho < 1/16L$ (in the case of EG) and $\rho < 8/27\sqrt{6}L$ (in the case of OG) [Luo and Tran-Dinh, 2022]
 - ✓ Non-convergence of EG when $\gamma_1 = 1/L$ and $\rho > (1 L\gamma_2)/2L$ [Pethick et al., 2022]
 - ? Can the bound on ρ be improved when $\gamma_1 \neq 1/L$ in the case of EG?
 - ? What is the upper bound on ρ in the case of OG?
 - ? Is it possible to achieve last-iterate convergence for $\rho \in [1/16L, 1/2L)$ (in the case of EG) and $\rho \geq [8/27\sqrt{6}L, 1/2L)$ (in the case of OG)?

7 / 31

Convergence under Negative Comonotonicity

Proximal Point method

Preliminaries

- ✓ Asymptotic convergence [Combettes and Pennanen, 2004]
- ? Non-asymptotic analysis and convergence rates are missing
- ? Worst-case examples are unknown
- Extragradient and Optimistic Gradient methods
 - ✓ Best-iterate $\mathcal{O}(1/N)$ convergence under star-negative comonotonicity for $\rho < 1/2L$ [Pethick et al., 2022, Böhm, 2022] (F is assumed to be L-Lipschitz)
 - ✓ Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\rho < 1/16L$ (in the case of EG) and $\rho < 8/27\sqrt{6}L$ (in the case of OG) [Luo and Tran-Dinh, 2022]
 - ✓ Non-convergence of EG when $\gamma_1 = 1/L$ and $\rho > (1 L\gamma_2)/2L$ [Pethick et al., 2022]
 - ? Can the bound on ρ be improved when $\gamma_1 \neq 1/L$ in the case of EG?
 - ? What is the upper bound on ρ in the case of OG?
 - ? Is it possible to achieve last-iterate convergence for $\rho \in [1/16L, 1/2L)$ (in the case of EG) and $\rho \geq [8/27\sqrt{6}L, 1/2L)$ (in the case of OG)?

In our work, we address these questions (the last question is resolved partially)

Eduard Gorbunov February 13, 2023

PEP for the Analysis of PP

- PP: $x^{k+1} = x^k \gamma F(x^{k+1})$
- Convergence metric: $||x^N x^{N-1}||^2$

PEP for the Analysis of PP

- PP: $x^{k+1} = x^k \gamma F(x^{k+1})$
- Convergence metric: $||x^N x^{N-1}||^2$
- Let's PEP it!

$$\max_{F,d,x^0} \|x^N - x^{N-1}\|^2$$
 (6)

s.t. $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is max. ρ -negative comonotone, $\|x^0 - x^*\|^2 \le R^2, \ 0 \in F(x^*),$ $x^{k+1} = x^k - \gamma F(x^{k+1}), \quad k = 0, 1, \dots, N-1.$

PEP for the Analysis of PP

- PP: $x^{k+1} = x^k \gamma F(x^{k+1})$
- Convergence metric: $||x^N x^{N-1}||^2$
- Let's PEP it!

$$\max_{F,d,x^0} \|x^N - x^{N-1}\|^2$$
 (6)

s.t. $F: \mathbb{R}^d \Rightarrow \mathbb{R}^d$ is max. ρ -negative comonotone, $\|x^0 - x^*\|^2 \le R^2, \ 0 \in F(x^*),$ $x^{k+1} = x^k - \gamma F(x^{k+1}), \quad k = 0, 1, \dots, N-1.$

Maximization over *infinitely-dimensional* space of ρ -negative comonotone operators

Preliminaries

Finitely-Dimensional PEP for the Analysis of PP

$$\max_{\substack{x^*, x^0, x^1, \dots, x^N \in \mathbb{R}^d \\ g^*, g^0, g^1, \dots, g^N \in \mathbb{R}^d}} \|x^N - x^{N-1}\|^2$$

$$\text{s.t.} \qquad F : \mathbb{R}^d \rightrightarrows \mathbb{R}^d \text{ is max. } \rho\text{-negative comonotone,}$$

$$g^k \in F(x^k), \quad k = *, 0, 1, \dots, N, \quad g^* = 0,$$

$$\|x^0 - x^*\|^2 \leq R^2,$$

$$x^{k+1} = x^k - \gamma g^{k+1}, \quad k = 0, 1, \dots, N-1.$$

$$(7)$$

Finitely-Dimensional PEP for the Analysis of PP

$$\max_{\substack{x^*, x^0, x^1, \dots, x^N \in \mathbb{R}^d \\ g^*, g^0, g^1, \dots, g^N \in \mathbb{R}^d}} \|x^N - x^{N-1}\|^2$$

$$\text{s.t.} \qquad F : \mathbb{R}^d \Rightarrow \mathbb{R}^d \text{ is max. } \rho\text{-negative comonotone,}$$

$$g^k \in F(x^k), \quad k = *, 0, 1, \dots, N, \quad g^* = 0,$$

$$\|x^0 - x^*\|^2 < R^2.$$

$$(7)$$

 $x^{k+1} = x^k - \gamma g^{k+1}, \quad k = 0, 1, \dots, N-1.$

Finitely-dimensional problem

Preliminaries

✓ Equivalent to the original PEP

Finitely-Dimensional PEP for the Analysis of PP

$$\max_{\substack{d\\x^*,x^0,x^1,\dots,x^N\in\mathbb{R}^d\\g^*,g^0,g^1,\dots,g^N\in\mathbb{R}^d}} \|x^N-x^{N-1}\|^2$$
(7)
$$\mathrm{s.t.} \qquad F:\mathbb{R}^d \rightrightarrows \mathbb{R}^d \text{ is max. } \rho\text{-negative comonotone},$$
(8)
$$g^k \in F(x^k), \quad k=*,0,1,\dots,N, \quad g^*=0,$$
(9)

$$\|x^{0} - x^{*}\|^{2} \le R^{2},$$

 $x^{k+1} = x^{k} - \gamma g^{k+1}, \quad k = 0, 1, ..., N-1.$

Finitely-dimensional problem

Preliminaries

- ✓ Equivalent to the original PEP
- Non-trivial constraints (8)-(9)

Interpolation Conditions for Negative Comonotonicity

Theorem 1

Preliminaries

Let $\{(x^k, g^k)\}_{k=0}^N \subseteq \mathbb{R}^d \times \mathbb{R}^d$ be some finite set of pairs of points in \mathbb{R}^d .

Interpolation Conditions for Negative Comonotonicity

Theorem 1

Preliminaries

Let $\{(x^k, g^k)\}_{k=0}^N \subseteq \mathbb{R}^d \times \mathbb{R}^d$ be some finite set of pairs of points in \mathbb{R}^d . There exists a maximal ho-negative comonotone operator $F:\mathbb{R}^d
ightrightarrow \mathbb{R}^d$ such that $g^k \in F(x^k)$, k = 0, ..., N if and only if

$$\langle g^{i} - g^{j}, x^{i} - x^{j} \rangle \ge -\rho \|g^{i} - g^{j}\|^{2} \quad \forall i, j = 0, \dots, N.$$
 (10)

11 / 31

Finitely-Dimensional PEP for the Analysis of PP: Better Version

$$\max_{\substack{x^*, x^0, x^1, \dots, x^N \in \mathbb{R}^d \\ g^*, g^0, g^1, \dots, g^N \in \mathbb{R}^d}} \|x^N - x^{N-1}\|^2 \tag{11}$$

$$x^*, x^0, x^1, \dots, x^N \in \mathbb{R}^d \tag{11}$$
s.t.
$$\langle g^i - g^j, x^i - x^j \rangle \ge -\rho \|g^i - g^j\|^2, \ i, j = *, 0, 1, \dots, N,$$

$$g^* = 0,$$

$$\|x^0 - x^*\|^2 \le R^2,$$

$$x^{k+1} = x^k - \gamma g^{k+1}, \quad k = 0, 1, \dots, N-1$$

Eduard Gorbunov February 13, 2023

Finitely-Dimensional PEP for the Analysis of PP: Better Version

$$\max_{\substack{x^*, x^0, x^1, \dots, x^N \in \mathbb{R}^d \\ g^*, g^0, g^1, \dots, g^N \in \mathbb{R}^d}} \|x^N - x^{N-1}\|^2 \tag{11}$$

$$x^*, x^0, x^1, \dots, x^N \in \mathbb{R}^d \tag{11}$$
s.t.
$$\langle g^i - g^j, x^i - x^j \rangle \ge -\rho \|g^i - g^j\|^2, \ i, j = *, 0, 1, \dots, N,$$

$$g^* = 0,$$

$$\|x^0 - x^*\|^2 \le R^2,$$

$$x^{k+1} = x^k - \gamma g^{k+1}, \quad k = 0, 1, \dots, N-1$$

- ✓ Finitely-dimensional problem
- ✓ Equivalent to the original PEP
- ✓ Can be reformulated as SDP using the standard steps for PEPs [Taylor et al., 2017, Ryu et al., 2020]

Eduard Gorbunov

11 / 31

12 / 31

SDP Reformulation of PEP for PP

$$\max_{G \in \mathbb{S}_{+}^{N+3}} \operatorname{Tr}(M_{0}G)
s.t. \operatorname{Tr}(M_{i}G) \leq 0, i = 1, 2 \dots, (N+2)(N+3),
\operatorname{Tr}(M_{-1}G) < R^{2}$$
(12)

- $G = V^{\top}V$, where $V = (x^*, x^0, g^0, g^1, \dots, g^N)$
- Matrices M_i encode the objective and constraints

Eduard Gorbunov February 13, 2023

$$\max_{G \in \mathbb{S}_{+}^{N+3}} \quad \text{Tr}(M_{0}G)$$
s.t.
$$\text{Tr}(M_{i}G) \leq 0, \quad i = 1, 2 \dots, (N+2)(N+3),$$

$$\text{Tr}(M_{-1}G) < R^{2}$$
(12)

- $G = V^{\top}V$, where $V = (x^*, x^0, g^0, g^1, \dots, g^N)$
- Matrices M_i encode the objective and constraints
- Using the *trace heuristic* [Taylor et al., 2017] one can generate low-dimensional worst-case examples

Worst-case Examples for PP

Figure: The worst-case trajectories of PP for N = 40. The form of trajectories hints that the worst-case operator is a rotation operator.

Eduard Gorbunov February 13, 2023 13/31

Worst-case Example Characteristics

Preliminaries

- $\rho \|F(x^k)\|/\|x^k x^*\|$ and $-\langle F(x^k), x^k x^* \rangle/(\|F(x^k)\| \cdot \|x^k x^*\|)$ remain the same during the run of the method
- These characteristics coincide with $\rho/\sqrt{N\gamma(\gamma-2\rho)}$ as long as the total number of steps N is sufficiently large $(N \ge \max\{\rho^2/\gamma(\gamma-2\rho), 1\})$

Eduard Gorbunov February 13, 2023

14 / 31

Worst-case Example: Explicit Expression

Theorem 2

For any $\rho > 0, \gamma > 2\rho$, and $N \ge \max\{\rho^2/\gamma(\gamma-2\rho), 1\}$ there exists ρ -negatively comonotone single-valued operator $F: \mathbb{R}^d \to \mathbb{R}^d$ such that after N iterations PP with stepsize γ produces x^{N+1} satisfying

$$||F(x^{N+1})||^2 \ge \frac{||x^0 - x^*||^2}{\gamma(\gamma - 2\rho)N\left(1 + \frac{1}{N}\right)^{N+1}}.$$
 (13)

Worst-case Example: Explicit Expression

Theorem 2

Preliminaries

For any $\rho > 0, \gamma > 2\rho$, and $N \ge \max\{\rho^2/\gamma(\gamma-2\rho), 1\}$ there exists ρ -negatively comonotone single-valued operator $F: \mathbb{R}^d \to \mathbb{R}^d$ such that after N iterations PP with stepsize γ produces x^{N+1} satisfying

$$||F(x^{N+1})||^2 \ge \frac{||x^0 - x^*||^2}{\gamma(\gamma - 2\rho)N\left(1 + \frac{1}{N}\right)^{N+1}}.$$
 (13)

Indeed, one can pick the two-dimensional $F: \mathbb{R}^2 \to \mathbb{R}$: $F(x) = \alpha Ax$ with

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \alpha = \frac{|\cos \theta|}{\rho}$$

for $\theta \in (\pi/2, \pi)$ such that $\cos \theta = -\frac{\rho}{\sqrt{N\gamma(\gamma-2\rho)}}$.

February 13, 2023 Eduard Gorbunov

Convergence Results for PP

Theorem 3

Preliminaries

Let $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ be ρ -star-negative comonotone. Then, for any $\gamma > 2\rho$ the iterates produced by PP are well-defined and satisfy $\forall N \geq 1$:

$$\frac{1}{N} \sum_{k=1}^{N} \|x^k - x^{k-1}\|^2 \le \frac{\gamma \|x^0 - x^*\|^2}{(\gamma - 2\rho)N}.$$
 (14)

Convergence Results for PP

Theorem 3

Preliminaries

Let $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ be ρ -star-negative comonotone. Then, for any $\gamma > 2\rho$ the iterates produced by PP are well-defined and satisfy $\forall N > 1$:

$$\frac{1}{N} \sum_{k=1}^{N} \|x^k - x^{k-1}\|^2 \le \frac{\gamma \|x^0 - x^*\|^2}{(\gamma - 2\rho)N}.$$
 (14)

If $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is ρ -negative comonotone, then for any $\gamma > 2\rho$ and any k > 1 the iterates produced by PP satisfy

$$||x^{k+1} - x^k|| \le ||x^k - x^{k-1}||$$

and for any N > 1:

$$\|x^{N} - x^{N-1}\|^{2} \le \frac{\gamma \|x^{0} - x^{*}\|^{2}}{(\gamma - 2\rho)N}.$$
 (15)

Large Stepsize is Mandatory for PP

Theorem 4

Preliminaries

For any $\rho > 0$ there exists ρ -negatively comonotone single-valued operator $F: \mathbb{R}^d \to \mathbb{R}^d$ such that PP does not converge to the solution of IP for any $0 < \gamma \le 2\rho$. In particular, one can take $F(x) = -x/\rho$.

Large Stepsize is Mandatory for PP

Theorem 4

Preliminaries

For any $\rho > 0$ there exists ρ -negatively comonotone single-valued operator $F: \mathbb{R}^d \to \mathbb{R}^d$ such that PP does not converge to the solution of IP for any $0 < \gamma < 2\rho$. In particular, one can take $F(x) = -x/\rho$.

This a relatively rare phenomenon when decreasing the stepsize leads to non-convergence

Eduard Gorbunov February 13, 2023 17 / 31

Numerical Verification of the Upper Bound

Figure: The solution of PEP compared with the lower bound ("bound (6)" in the plot) and the upper bound ("bound (7)" in the plot) for different values of γ and N.

Summary of the Obtained Results

Proximal Point method

Preliminaries

- Last-iterate $\mathcal{O}(1/N)$ convergence under negative comonotonicity for $\gamma > 2\rho$
- Best-iterate $\mathcal{O}(^1\!/{\it N})$ convergence under star-negative comonotonicity $\gamma>2\rho$
- Worst-case examples matching (up to numerical factor) the upper bound
- Counter-examples for $\gamma < 2\rho$
- Extragradient and Optimistic Gradient methods
 - Last-iterate $\mathcal{O}(1/{\rm N})$ convergence under negative comonotonicity for $\rho \leq 1/8L$ (in the case of EG) and $\rho \leq 5/62L$ (in the case of OG)
 - Counter-examples for $\rho > 1/2L$ and any stepsizes

References

20 / 31

References I

Preliminaries

- A. Böhm. Solving nonconvex-nonconcave min-max problems exhibiting weak minty solutions. *arXiv* preprint *arXiv*:2201.12247, 2022.
- Y. Cai, A. Oikonomou, and W. Zheng. Tight last-iterate convergence of the extragradient method for constrained monotone variational inequalities. *arXiv* preprint arXiv:2204.09228 version 1, 2022.
- P. L. Combettes and T. Pennanen. Proximal methods for cohypomonotone operators. *SIAM journal on control and optimization*, 43(2):731–742, 2004.
- J. Diakonikolas, C. Daskalakis, and M. I. Jordan. Efficient methods for structured nonconvex-nonconcave min-max optimization. In *International Conference on Artificial Intelligence and Statistics*. PMLR, 2021.
- N. Golowich, S. Pattathil, and C. Daskalakis. Tight last-iterate convergence rates for no-regret learning in multi-player games. *arXiv preprint arXiv:2010.13724*, 2020a.

References II

- N. Golowich, S. Pattathil, C. Daskalakis, and A. Ozdaglar. Last iterate is slower than averaged iterate in smooth convex-concave saddle point problems. In *Conference on Learning Theory*, pages 1758–1784. PMLR, 2020b.
- E. Gorbunov, N. Loizou, and G. Gidel. Extragradient method: O(1/k) last-iterate convergence for monotone variational inequalities and connections with cocoercivity. pages 366–402, 2022a.
- E. Gorbunov, A. Taylor, and G. Gidel. Last-iterate convergence of optimistic gradient method for monotone variational inequalities. *arXiv* preprint *arXiv*:2205.08446, 2022b.
- G. Gu and J. Yang. Optimal nonergodic sublinear convergence rate of proximal point algorithm for maximal monotone inclusion problems. *arXiv* preprint *arXiv*:1904.05495. 2019.
- B. He and X. Yuan. On the convergence rate of douglas—rachford operator splitting method. *Mathematical Programming*, 153(2):715–722, 2015.

References III

- G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon, 12:747-756, 1976.
- Y. Luo and Q. Tran-Dinh. Last-iterate convergence rates and randomized block-coordinate variant of extragradient-type methods for co-monotone equations. preprint, 2022.
- B. Martinet. Regularisation d'inequations variationelles par approximations successives. Revue Française d'Informatique et de Recherche Operationelle, 4: 154–159, 1970,
- T. Pennanen. Local convergence of the proximal point algorithm and multiplier methods without monotonicity. Mathematics of Operations Research, 27(1): 170-191, 2002.
- T. Pethick, P. Latafat, P. Patrinos, O. Fercoq, and V. Cevherå. Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems. In International Conference on Learning Representations, 2022.

References IV

- L. D. Popov. A modification of the arrow-hurwicz method for search of saddle points. *Mathematical notes of the Academy of Sciences of the USSR*, 28(5): 845–848, 1980.
- R. T. Rockafellar. Monotone operators and the proximal point algorithm. *SIAM journal on control and optimization*, 14(5):877–898, 1976.
- E. K. Ryu, A. B. Taylor, C. Bergeling, and P. Giselsson. Operator splitting performance estimation: Tight contraction factors and optimal parameter selection. *SIAM Journal on Optimization*, 30(3):2251–2271, 2020.
- A. Taylor and F. Bach. Stochastic first-order methods: non-asymptotic and computer-aided analyses via potential functions. In *Conference on Learning Theory*, pages 2934–2992. PMLR, 2019.
- A. B. Taylor, J. M. Hendrickx, and F. Glineur. Performance estimation toolbox (pesto): automated worst-case analysis of first-order optimization methods. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages 1278–1283. IEEE. 2017.

Proximal Point (PP) method

Preliminaries

✓ Last-iterate guarantees:
$$||x^N - x^{N-1}||^2 = \mathcal{O}(1/N)$$
 [He and Yuan, 2015]

Eduard Gorbunov February 13, 2023 24 / 31

• Proximal Point (PP) method

Preliminaries

- ✓ Last-iterate guarantees: $||x^N x^{N-1}||^2 = \mathcal{O}(1/N)$ [He and Yuan, 2015]
- ✓ Worst-case examples and matching lower-bounds for PP [Gu and Yang, 2019]

Eduard Gorbunov February 13, 2023 24 / 31

- Proximal Point (PP) method
 - ✓ Last-iterate guarantees: $||x^N x^{N-1}||^2 = \mathcal{O}(1/N)$ [He and Yuan, 2015]
 - ✓ Worst-case examples and matching lower-bounds for PP [Gu and Yang, 2019]
- Extragradient and Optimistic Gradient (EG) methods:
 - ✓ Last-iterate guarantees when F and ∇F are Lipschitz: $||F(x^N)||^2 = \mathcal{O}(1/N)$ [Golowich et al., 2020b,a]

Eduard Gorbunov February 13, 2023 24 / 31

Methods for **Monotone** Inclusions are Well-Studied

Proximal Point (PP) method

Preliminaries

- ✓ Last-iterate guarantees: $||x^N x^{N-1}||^2 = \mathcal{O}(1/N)$ [He and Yuan, 2015]
- ✓ Worst-case examples and matching lower-bounds for PP [Gu and Yang, 2019]
- Extragradient and Optimistic Gradient (EG) methods:
 - ✓ Last-iterate guarantees when F and ∇F are Lipschitz: $||F(x^N)||^2 = \mathcal{O}(1/N)$ [Golowich et al., 2020b,a]
 - ✓ Matching lower bounds [Golowich et al., 2020b,a]

Methods for Monotone Inclusions are Well-Studied

- Proximal Point (PP) method
 - ✓ Last-iterate guarantees: $||x^N x^{N-1}||^2 = \mathcal{O}(1/N)$ [He and Yuan, 2015]
 - ✓ Worst-case examples and matching lower-bounds for PP [Gu and Yang, 2019]
- Extragradient and Optimistic Gradient (EG) methods:
 - ✓ Last-iterate guarantees when F and ∇F are Lipschitz: $||F(x^N)||^2 = \mathcal{O}(1/N)$ [Golowich et al., 2020b,a]
 - ✓ Matching lower bounds [Golowich et al., 2020b,a]
 - ✓ Last-iterate guarantees when F is Lipschitz: $||F(x^N)||^2 = \mathcal{O}(1/N)$ [Gorbunov et al., 2022a,b, Cai et al., 2022]

- Proximal Point (PP) method
 - ✓ Last-iterate guarantees: $||x^N x^{N-1}||^2 = \mathcal{O}(1/N)$ [He and Yuan, 2015]
 - ✓ Worst-case examples and matching lower-bounds for PP [Gu and Yang, 2019]
- Extragradient and Optimistic Gradient (EG) methods:
 - ✓ Last-iterate guarantees when F and ∇F are Lipschitz: $||F(x^N)||^2 = \mathcal{O}(1/N)$ [Golowich et al., 2020b,a]
 - ✓ Matching lower bounds [Golowich et al., 2020b,a]
 - ✓ Last-iterate guarantees when F is Lipschitz: $||F(x^N)||^2 = \mathcal{O}(1/N)$ [Gorbunov et al., 2022a,b, Cai et al., 2022]

Can we relax the monotonicity assumption to achieve similar results?

Eduard Gorbunov February 13, 2023 24 / 31

Spectral Viewpoint on Negative Comonotonicity

Theorem 8

Preliminaries

Let $F:\mathbb{R}^d \to \mathbb{R}^d$ be a continuously differentiable. Then, the following statements are equivalent:

- F is ρ-negative comonotone,
- Re $(1/\lambda) > -\rho$ for all $\lambda \in \operatorname{Sp}(\nabla F(x)), \forall x \in \mathbb{R}^d$.

Eduard Gorbunov February 13, 2023 25 / 31 **Preliminaries**

26 / 31

Spectral Viewpoint on Negative Comonotonicity

Figure: Visualization of Theorem 8. Red open disc corresponds to the constraint $\operatorname{Re}(1/\lambda) < -\rho$ that defines the set such that all eigenvalues the Jacobian of ρ -negative comonotone operator should lie outside this set.

Theorem 9

Preliminaries

If $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is ρ -negative comonotone, then the solution set $X^* = F^{-1}(0)$ is convex.

Eduard Gorbunov February 13, 2023 27 / 31

Theorem 9

Preliminaries

If $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is ρ -negative comonotone, then the solution set $X^* = F^{-1}(0)$ is convex.

Proof sketch

• F and $(F^{-1} + \rho \cdot Id)^{-1}$ have the same set of solutions

Eduard Gorbunov February 13, 2023 27 / 31

Theorem 9

Preliminaries

If $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is ρ -negative comonotone, then the solution set $X^* = F^{-1}(0)$ is convex.

Proof sketch

- F and $(F^{-1} + \rho \cdot Id)^{-1}$ have the same set of solutions
- F is maximally negative comonotone \iff $F^{-1} + \rho \cdot Id$ is maximally monotone \iff $(F^{-1} + \rho \cdot Id)^{-1}$ is maximally monotone

Theorem 9

Preliminaries

If $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is ρ -negative comonotone, then the solution set $X^* = F^{-1}(0)$ is convex.

Proof sketch

- F and $(F^{-1} + \rho \cdot Id)^{-1}$ have the same set of solutions
- F is maximally negative comonotone \iff $F^{-1} + \rho \cdot Id$ is maximally monotone \iff $(F^{-1} + \rho \cdot Id)^{-1}$ is maximally monotone
- $((F^{-1} + \rho \cdot \operatorname{Id})^{-1})^{-1}(0)$ is convex as the set of zeros of maximally comonotone operator

February 13, 2023 Eduard Gorbunov

Negative Comonotonicity Does Not Allow Separated Optima

Theorem 9

If $F: \mathbb{R}^d \rightrightarrows \mathbb{R}^d$ is ρ -negative comonotone, then the solution set $X^* = F^{-1}(0)$ is convex.

Proof sketch

- F and $(F^{-1} + \rho \cdot Id)^{-1}$ have the same set of solutions
- F is maximally negative comonotone \iff $F^{-1} + \rho \cdot Id$ is maximally monotone \iff $(F^{-1} + \rho \cdot Id)^{-1}$ is maximally monotone
- $((F^{-1} + \rho \cdot \operatorname{Id})^{-1})^{-1}(0)$ is convex as the set of zeros of maximally comonotone operator

Nevertheless, studying the convergence of traditional methods under negative comonotonicity can be seen as a natural step towards understanding their behaviors in more complicated non-monotonic cases

Extra Slide on Trace Heuristic

Preliminaries

- First one needs to solve SDP (12) (denote the optimal value as v_*)
- Then one can solve another SDP

$$\min_{G \in \mathbb{S}_{+}^{N+3}} \quad \text{Tr}(G) \tag{16}$$
s.t.
$$\text{Tr}(M_{i}G) \leq 0, \quad i = 1, 2 \dots, (N+2)(N+3), \\
\text{Tr}(M_{-1}G) \leq R^{2}, \\
\text{Tr}(M_{0}G) = \nu_{*} \tag{17}$$

in the hope of finding a low-rank solution

Eduard Gorbunov February 13, 2023 28 / 31

Last-Iterate Convergence of EG

Theorem 5

Preliminaries

If $F:\mathbb{R}^d o \mathbb{R}^d$ is L-Lipschitz and ho-negative comonotone with $ho \leq 1/8L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \le \gamma \le 1/2L$, then for any $k \ge 0$ the iterates produced by EG satisfy

$$||F(x^{k+1})|| \le ||F(x^k)||$$
 (18)

Last-Iterate Convergence of EG

Theorem 5

Preliminaries

If $F:\mathbb{R}^d\to\mathbb{R}^d$ is L-Lipschitz and ρ -negative comonotone with $\rho\leq 1/8L$ and $\gamma_1=\gamma_2=\gamma$ such that $4\rho\leq\gamma\leq 1/2L$, then for any $k\geq 0$ the iterates produced by EG satisfy

$$||F(x^{k+1})|| \le ||F(x^k)||$$
 (18)

and for any $N \geq 1$

$$||F(x^N)||^2 \le \frac{28||x^0 - x^*||^2}{N\gamma^2 + 320\gamma\rho}.$$
 (19)

Last-Iterate Convergence of EG

Theorem 5

If $F:\mathbb{R}^d o \mathbb{R}^d$ is L-Lipschitz and ho-negative comonotone with $ho \leq 1/8L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \le \gamma \le 1/2L$, then for any $k \ge 0$ the iterates produced by EG satisfy

$$||F(x^{k+1})|| \le ||F(x^k)||$$
 (18)

and for any N > 1

$$||F(x^N)||^2 \le \frac{28||x^0 - x^*||^2}{N\gamma^2 + 320\gamma\rho}.$$
 (19)

✓ Potential from (18) and the proof of (18) were found via computer (the approach was motivated by [Taylor and Bach, 2019])

February 13, 2023 Eduard Gorbunov

Last-Iterate Convergence of EG

Theorem 5

Preliminaries

If $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and ρ -negative comonotone with $\rho \leq 1/8L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \le \gamma \le 1/2L$, then for any $k \ge 0$ the iterates produced by EG satisfy

$$||F(x^{k+1})|| \le ||F(x^k)||$$
 (18)

and for any N > 1

$$||F(x^N)||^2 \le \frac{28||x^0 - x^*||^2}{N\gamma^2 + 320\gamma\rho}.$$
 (19)

- ✓ Potential from (18) and the proof of (18) were found via computer (the approach was motivated by [Taylor and Bach, 2019])
- ? **Open question:** is it possible to show $\mathcal{O}(1/N)$ last-iterate convergence when $\rho \in (1/8L, 1/2L)$?

Last-Iterate Convergence of OG

Theorem 6

Preliminaries

If $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and ρ -negative comonotone with $\rho \leq 5/62L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho < \gamma < \frac{10}{31}\iota$, then for any k > 0 the iterates produced by OG satisfy

$$||F(x^{k+1})||^{2} + ||F(x^{k+1}) - F(\widetilde{x}^{k})||^{2} \leq ||F(x^{k})||^{2} + ||F(x^{k}) - F(\widetilde{x}^{k-1})||^{2} - \frac{1}{100} ||F(\widetilde{x}^{k}) - F(\widetilde{x}^{k-1})||^{2}.$$
(20)

Last-Iterate Convergence of OG

Theorem 6

Preliminaries

If $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and ρ -negative comonotone with $\rho \leq 5/62L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho < \gamma < \frac{10}{31}\iota$, then for any k > 0 the iterates produced by OG satisfy

$$||F(x^{k+1})||^{2} + ||F(x^{k+1}) - F(\widetilde{x}^{k})||^{2} \leq ||F(x^{k})||^{2} + ||F(x^{k}) - F(\widetilde{x}^{k-1})||^{2} - \frac{1}{100} ||F(\widetilde{x}^{k}) - F(\widetilde{x}^{k-1})||^{2}.$$
(20)

and for any N > 1

$$||F(x^N)||^2 \le \frac{717||x^0 - x^*||^2}{N\gamma(\gamma - 3\rho) + 800\gamma^2}.$$
 (21)

February 13, 2023 Eduard Gorbunov

Last-Iterate Convergence of OG

Theorem 6

If $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and ρ -negative comonotone with $\rho \leq 5/62L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \le \gamma \le 10/31L$, then for any $k \ge 0$ the iterates produced by OG satisfy

$$||F(x^{k+1})||^{2} + ||F(x^{k+1}) - F(\widetilde{x}^{k})||^{2} \leq ||F(x^{k})||^{2} + ||F(x^{k}) - F(\widetilde{x}^{k-1})||^{2} - \frac{1}{100} ||F(\widetilde{x}^{k}) - F(\widetilde{x}^{k-1})||^{2}.$$
(20)

and for any N > 1

$$||F(x^N)||^2 \le \frac{717||x^0 - x^*||^2}{N\gamma(\gamma - 3\rho) + 800\gamma^2}.$$
 (21)

✓ Potential from (18) and the proof of (18) were found via computer

February 13, 2023 Eduard Gorbunov

Theorem 6

If $F: \mathbb{R}^d \to \mathbb{R}^d$ is L-Lipschitz and ρ -negative comonotone with $\rho \leq 5/62L$ and $\gamma_1 = \gamma_2 = \gamma$ such that $4\rho \le \gamma \le 10/31L$, then for any $k \ge 0$ the iterates produced by OG satisfy

$$||F(x^{k+1})||^{2} + ||F(x^{k+1}) - F(\widetilde{x}^{k})||^{2} \leq ||F(x^{k})||^{2} + ||F(x^{k}) - F(\widetilde{x}^{k-1})||^{2} - \frac{1}{100} ||F(\widetilde{x}^{k}) - F(\widetilde{x}^{k-1})||^{2}.$$
(20)

and for any N > 1

$$||F(x^N)||^2 \le \frac{717||x^0 - x^*||^2}{N\gamma(\gamma - 3\rho) + 800\gamma^2}.$$
 (21)

Proximal Point Method

- ✓ Potential from (18) and the proof of (18) were found via computer
- ? **Open question:** is it possible to show O(1/N) last-iterate convergence when $\rho \in (5/62L, 1/2L)$?

No Convergence when $\rho > 1/2L$

Theorem 7

Preliminaries

For any L>0, $\rho\geq 1/2L$, and any choice of stepsizes $\gamma_1,\gamma_2>0$ there exists ρ -negative comonotone L-Lipschitz operator F such that EG/OG does not necessary converges on solving IP with this operator F.

Eduard Gorbunov February 13, 2023 31 / 31

No Convergence when $\rho > 1/2L$

Theorem 7

Preliminaries

For any L>0, $\rho\geq 1/2L$, and any choice of stepsizes $\gamma_1,\gamma_2>0$ there exists ρ -negative comonotone L-Lipschitz operator F such that EG/OG does not necessary converges on solving IP with this operator F. In particular, for $\gamma_1 > 1/L$ it is sufficient to take F(x) = Lx, and for $0 < \gamma_1 \le 1/L$ one can take F(x) = LAx, where $x \in \mathbb{R}^2$.

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad \theta = \frac{2\pi}{3}.$$